Formula for Sizing Chemical Feed Pump

Well Pump	Required	Time	Solution	Required	
FLOW RATE	\mathbf{X}	DOSAGE	\mathbf{X}	$\mathbf{1 4 4 0} \div$	STRENGTH $=$
(gpm)		(ppm)		$(\mathrm{min} / \mathrm{day})$	(ppm)

A. Well Pump Flow Rate (gpm)

Turn well pump off, drain bladder tank, place 5 gallon bucket under spigot (coming of bladder tank), open spigot, turn well pump back on, time how long it takes to fill 5 gallon bucket

Example:

5 gallons in 2 minutes $=2.5 \mathrm{gpm}$
5 gallons in 1 minute $=5 \mathrm{gpm}$
5 gallons in 30 seconds $=10 \mathrm{gpm}$
B. Dosages (ppm)

	Favorable pH Range	Chlorine as Cl_{2}	Contact Time Required
Iron (Fe)	$6.5-7.5$	1.0 ppm	20 minutes
Manganese (Mn)	$8.0-9.5$	2.0 ppm	20 minutes
Hyd. Sulfide $\left(\mathrm{H}_{2} \mathrm{~S}\right)$	$8.5-10$	3.0 ppm	30 minutes

Example:

1. For every 1 ppm of Iron, 1 ppm of chlorine is required for dosage
2. If water report consist of 2.0 ppm iron \& 1 ppm of manganese; required dosage would be 3.0 ppm of chlorine Note: Always round up, i.e., 0.3 ppm iron $=1 \mathrm{ppm}$ chlorine

C. Time (minutes/day)

1440 minutes per day

D. Solution Strength

Bleach 5.25\%	$52,500 \mathrm{ppm}$
Bleach 12.5\%	$125,000 \mathrm{ppm}$
Hydrogen Peroxide 35\%	$350,000 \mathrm{ppm}$

Chemical Feed Pump Sizing Example

If pump produces 5 gpm , contains 3 ppm of iron and were using regular 5.25% chlorine bleach

Well Pump		Required		Time	Solution		Required
5 FLOW RATE (gpm)	X	3 DOSAGE (ppm)	X	$\begin{aligned} & 1440 \div \\ & (\min / \text { day }) \end{aligned}$	52500 STRENGTH (ppm)	=	0.41 FEED RATE (gpd)

We offer 2 different size pumps, 3 gallons per day and 10 gallons per day. When sizing the pump, the pump should be set $50-70 \%$ of its maximum output to maximize efficiency and not overrun pump. The 3 gpd pump would be set to inject 1-1.5 gpd; the 10 gpd would be set to inject at $3-5 \mathrm{gpd}$.

In the example above, our "required feed rate" is 0.41 gpd. This feed rate is closer to $1-1.5$ gpd for 3 gpd pump vs. the 3-5 gpd of 10 gpd pump. Therefore we would choose the 3 gpd pump based on this calculation.

However, as indicated we need to run between 1-1.5 gpd to maximize efficiency and were only at 0.41 gpd , therefore we will dilute this solution to achieve our 1-1.5 gpd feed requirement.

Take 1.5 gpd (half our pump curve) $\div 0.41$ gpd (Feed Rate) $=3.65$ Dilution Rate
We would dilute roughly 3.5 gallons of water to 1 gallon of bleach
1.5 gallons per day would be used if pump was running 24 hours per day; in a normal household the pump may only run a maximum total of 3 hours per day.

Example:

1.5 gallons per day $\div 24$ hours per day $=0.06$ gallons per hour
0.06 gallons per hour $x 3$ hours per day (pump usage) $=0.18$ gallons of solution used per day
0.18 gallons per day x 30 days $=5.6$ gallons per month

15 gallons solution tank $\div 5.6$ gallons per month $=2.6$ months of solution

